5,295 research outputs found

    On the Coverage Bound Problem of Empirical Likelihood Methods For Time Series

    Full text link
    The upper bounds on the coverage probabilities of the confidence regions based on blockwise empirical likelihood [Kitamura (1997)] and nonstandard expansive empirical likelihood [Nordman et al. (2013)] methods for time series data are investigated via studying the probability for the violation of the convex hull constraint. The large sample bounds are derived on the basis of the pivotal limit of the blockwise empirical log-likelihood ratio obtained under the fixed-b asymptotics, which has been recently shown to provide a more accurate approximation to the finite sample distribution than the conventional chi-square approximation. Our theoretical and numerical findings suggest that both the finite sample and large sample upper bounds for coverage probabilities are strictly less than one and the blockwise empirical likelihood confidence region can exhibit serious undercoverage when (i) the dimension of moment conditions is moderate or large; (ii) the time series dependence is positively strong; or (iii) the block size is large relative to sample size. A similar finite sample coverage problem occurs for the nonstandard expansive empirical likelihood. To alleviate the coverage bound problem, we propose to penalize both empirical likelihood methods by relaxing the convex hull constraint. Numerical simulations and data illustration demonstrate the effectiveness of our proposed remedies in terms of delivering confidence sets with more accurate coverage

    Joint Multi-Cell Resource Allocation Using Pure Binary-Integer Programming for LTE Uplink

    Full text link
    Due to high system capacity requirement, 3GPP Long Term Evolution (LTE) is likely to adopt frequency reuse factor 1 at the cost of suffering severe inter-cell interference (ICI). One of combating ICI strategies is network cooperation of resource allocation (RA). For LTE uplink RA, requiring all the subcarriers to be allocated adjacently complicates the RA problem greatly. This paper investigates the joint multi-cell RA problem for LTE uplink. We model the uplink RA and ICI mitigation problem using pure binary-integer programming (BIP), with integrative consideration of all users' channel state information (CSI). The advantage of the pure BIP model is that it can be solved by branch-and-bound search (BBS) algorithm or other BIP solving algorithms, rather than resorting to exhaustive search. The system-level simulation results show that it yields 14.83% and 22.13% gains over single-cell optimal RA in average spectrum efficiency and 5th percentile of user throughput, respectively.Comment: Accepted to IEEE Vehicular Technology Conference (VTC Spring), Seoul, Korea, May, 201
    • …
    corecore